Smooth B—Spline Illumination Maps
for Bi-Directional Ray Tracing

Richard A. Redner
The University of Tulsa

Mark E. Lee

Amoco Production Research

Samuel P. Uselton
Computer Sciences Corporation

Abstract

In this paper we introduce B—Spline illumination maps and their gen-
eralizations and extensions for use in realistic image generation algorithms.
The B-Spline lighting functions (i.e. illumination maps) are defined as
weighted probability density functions. The lighting functions can be esti-
mated from random data and may be used in bidirectional distributed ray
tracing programs as well as radiosity oriented algorithms. The use of these
lighting functions in a bidirectional ray tracing system which can handle
dispersion as well as the focusing of light through lenses is presented.

1 Introduction. The use of distributed light sources in computer graphics has
increased in recent years in an effort to generate more realistic computer generated
images. Area light sources were incorporated into ray tracing algorithms by Cook
[Cook84] who coined the phrase distributed ray tracing. In this context, a distributed
source is treated as a probability density function so that area light sources can be
statistically sampled [Cook84, Lee85]. In the field of bidirectional ray tracing, internal
lighting functions over the surfaces of objects are created from data and these distributed
sources are then sampled [Heck90] [Chen91].

We begin this paper by introducing the nonparametric probability density estima-
tion problem and present several common nonparametric density estimators. We then
make the connection between nonparametric density estimation and computer graphics
and discuss some of the computational difficulties which exist. The B-Spline density
estimator and extensions of this idea are then presented to help solve some of these
problems. We show how B-Spline lighting functions can be created from data, sam-

1

pled and rapidly evaluated. Statistical theorems concerning the asymptotic properties
of B-Spline lighting functions are also presented. Finally we show how we have used
B-Spline lighting functions in a bidirectional ray tracing system capable of rendering
images which show dispersion and the concentration of light by translucent objects.

2 Density estimation. A density function on the real line is a nonnegative
function p(z) which integrates to one. Given a random quantity X with probability
density function p(z), the probability that an observed value of X falls between two
numbers a and b is

Probability(e < X <b) = /b p(x)de.
Knowledge of the random variable X can be obtained by discovering its probability
density function, and this function can be used to make decisions and to perform other
computations.

In many cases, however, the density function is not known and must be esti-
mated from data. Specifically, given independent identically distributed observations
X1, ..., X, with unknown density function p(z) we wish to estimate p(x) from this data.
If the functional form of the density is known, but specific parameters are unknown, we
have a parametric density estimation problem. The use of

f= iX:XZ and 6% = S (X — 1)
n‘ ;

as estimators of the mean and variance of a normally distributed random variable
illustrates this case. In other situations, the form of the density is not known, and so
we must attempt to estimate a completely unknown density function based on the data
alone. This is the nonparametric density estimation problem.

The most common nonparametric density estimate is based on the histogram. The
histogram, normalized by the area under its graph, is a probability density function,
and so this normalized histogram is a nonparametric density estimate. To compute
the histogram from a set of data, one must select either the number of bins into which
the data is sorted or equivalently choose the width of the individual bins. The final
estimate is sensitive to this choice. However, as long as the width h approaches 0 and nh
approaches 400 as the sample size increases, the normalized histogram density estimate
will converge to the true underlying density at all points of continuity of p as the sample
size n increases.

In Figure 1, we see examples of four histogram density estimates based on 50 random
sample points within the interval [0, 100]. The true density function is the dashed curve
in each of the graphs. Clearly two bins in the histogram is not enough (Figure la) and
sixteen bins (Figure 1d) is too many. Better estimates can be obtained if the sample
size is increased. In all cases, of course, the histogram density estimate is discontinuous
at the boundaries of the bins.

A second class of density estimates are kernel density estimators which were intro-
duced by Parzen [Parz62]. In this setting a kernel is a density function and is usually

2

chosen to be symmetric about zero. Given data X7, ..., X, a kernel function K (z) and
a positive number ¢, the kernel density estimate of p(z) is

. 1l fe— X
o) = ok ()
=1

[

which is simply the convolution of =K (z/c) with the data. One of the difficulties with
using kernel density estimates is the fact that all of the data must be stored to evaluate
the density function. There can also be edge effects at the endpoints of the intervals if
the density does not approach zero at the end points. The estimated density is sensitive
to the choice of the parameter ¢ and small values of ¢ yield chaotic estimates.

In Figure 2, we see examples of four kernel density estimates based on the same
50 data points used in Figure 1. The kernel function K for this example is a quadratic
B-spline on the interval [—3/2,3/2]. The density estimate is highly variable when we
use ¢ = 10 and edge effects at 0 and 100 are quite severe for all values of ¢ used in these
examples.

Another density estimator is based on orthogonal series. Given an interval [a, b],
we consider a set of functions {¢x(z)}52, with the property that [¢;(z)éx(z) dz = 6,
where 6;;, = 1 if j = k and is zero otherwise. We also suppose that the set of functions
is complete in the sense that if p(z) is square integrable over the interval [a,b] (i.e.
f;pQ(t) dx < o0) then,

pla) = ()
k=1
where

o = [u(e)ple) de.

If p(x) is a density function then, using a suitably chosen value of m, the orthogonal
series density estimate based on the data Xy,..., X, is

Pu(2) = D drdr()
k=1
where
&k:£Z¢k(Xi) for k=1,...,m.
n =1

This density estimate has the very desirable property of being unbiased, so that the

expected value of each &; is ay, i.e.
b
Bla) = [awple) de = o

a

and therefore

mmmziwmw
3

for every x € [a,b]. So we see that & is an unbiased estimator of a and p,(z) is an
unbiased estimator of Y27° | apér(x).

Unfortunately the orthogonal series estimator is not necessarily a density, since p,
may be negative at some points and almost never integrates to one. These problems
can be overcome. However, it is not clear how to generate data from the estimated
density.

There are many other nonparametric density estimators. In particular, variable
kernel estimates have very nice properties, and nearest neighbor density estimates and
penalized maximum likelihood density estimators are both very interesting. Many one
dimensional density estimates can be easily extended to densities in higher dimensions,
and the reader is referred to Silverman [Silv86], Thompson and Tapia [Thom90], and
Scott [Scot92] for a more complete discussion of the nonparametric density estimation
problem.

3 Computer graphics applications which use density estimates. While
there are many techniques used in the generation of realistic computer generated im-
ages, two algorithms, ray tracing and radiosity, stand out and have received consider-
able attention. As was pointed out by Kajiya [Kaji86], both ray tracing and radiosity
paradigms provide methods for solving a particular integral equation commonly referred
to as the rendering equation. Many of the algorithms used (bidirectional ray tracing
and all radiosity algorithms in particular) require the storage of lighting information
across the surfaces in the scene. In all cases, this information can be thought of as a
scaled probability density function. The efficient construction and further manipulation
of these functions are fundamental problems.

In particular, in the radiosity method as described in Goral et al. [Gora84] (see
also Hottel [Hott54] or Sparrow [Spar63]) lighting functions are piecewise constant and
hence the lighting information is a weighted histogram. Surfaces are partitioned into
grids and each cell is assigned a radiosity value by the light propagation algorithm.
The radiosity algorithm was improved by Cohen and Greenberg in [Cohe85] by the
introduction of the hemi—cube structure and was further extended to include specular
reflection [Imme86].

In the paper by Wallace et al. [Wall87] a “two—pass solution” is described where the
light propagation algorithm computes the diffuse lighting effects and the specular light-
ing effects are determined by a ray tracing procedure. This procedure was extended by
Sillion and Puech [Sill89]. Again the intermediate lighting function is associated with a
discrete grid structure. Finally the paper by Campbell and Fussell [Camp90] introduces
adaptive mesh generation in order to improve the quality and efficiency of radiosity gen-
erated images. All of these methods are based on some sort of mesh generation to store
and represent the intermediate lighting function. Although these algorithms are deter-
ministic in design and not statistically based, the lighting representation is discrete and
has the structural form of a two dimensional histogram.

The paper by Chen et al. [Chen91] represents one of the latest efforts to fully solve
the rendering equation. This paper combines progressive refinement radiosity, light ray
tracing and monte carlo path tracing to account for all of the energy which can pass

4

from the light sources to the eye. In order to capture focussing effects, light rays from
the light sources are generated and the intersection of these rays with surfaces is stored.
Kernel density estimates are then used to construct a smooth lighting function over the
surface. In order to insure that these lighting functions are smooth, the width of each
kernel is adjusted so that the kernel covers at least m neighbors for some fixed constant
m.

The ray tracing algorithms compute an estimate of the solution to the rendering
equation by tracing rays. Rays from the eye are sent into the scene and at each object
intersection, reflected and refracted rays are generated. A shadow ray to each of the
light sources is also generated at each of these intersection points in order to compute the
amount of light which would be transported along the ray back to the eye. If the light
is an area light source then a random point on the light source is chosen according to
the power distribution or power density of the source. Cook et al. [Cook84] introduced
these distributed (i.e. area) lights to ray tracing. In most cases, an area light is assumed
to be uniformly bright across its surface, but this restriction is not required and any
power distribution can be used as long as there is an algorithm for generating a random
point from this density function. The color or wavelength of a light source may also
depend on the position on the light source. In this case the shadow ray should be chosen
according to the power distribution of the light source as a function of wavelength and
position. Thus, the power distribution is modeled by sampling.

Sampling of area light sources can produce penumbras and other interesting effects.
The sampling idea has been applied to simulate a variety of other effects as well. Sam-
pling the direction of reflected rays can be used to simulate rough surfaces. Sampling in
time and space provides motion blur. The number of applications of the “distributed”
approach shows that it is flexible and requires little customizing.

While distributed ray tracing is a very powerful method for generating images
which exhibit specular effects, one of its weaknesses is the expense involved in captur-
ing the effects of diffuse illumination. Arvo [Arvo86] suggested that ray tracing could
be performed in the forward and backward direction in order to capture diffuse lighting
effects. Heckbert [Heck90] described a bidirectional ray tracing system based on adap-
tive radiosity textures. Again we see the use of a simple but adaptive mesh to store
the intermediate lighting information. In the same paper, he put forward the idea that
a lighting function is a density and that histograms or kernel estimates could be used
to estimate density functions. This was exploited in Chen et al. [Chen91] but it also
opens the door for the use of other types of nonparametric density estimators in the
latest radiosity algorithms and in bidirectional ray tracing algorithms.

In particular, our current computer graphics research effort in bidirectional ray
tracing [Gehr92, Redn93] requires a probability density estimation scheme which can
be implemented over a subset of 3. In this application, density functions represent
normalized diffuse lighting functions on surfaces. These are generated from light rays
which have been emitted by the light source and propagated through the scene. The
three dimensions include two dimensions for the surface and one dimension for color
or wavelength. Ultimately the research will investigate directionally dependent lighting

5

functions and the addition of the directional dependence of the lighting functions will
add two more dimensions to the problem.

These are clearly very computationally demanding problems. It is well known
that the nonparametric density estimation problem is exceedingly difficult in higher
dimensions. If we are to overcome this problem, we must use a very large number of
observations. In order to have a practical method we require a nonparametric density
estimation scheme which requires a minimal amount of storage. Additionally, the non-
parametric density estimate must be easily generated from the data and we must be
able to rapidly evaluate the density function. Finally, we will want to be able to evaluate
conditional densities [Hogg65] and need the density estimate to not only be continuous,
but also smooth, in order to eliminate the possibility of mach banding effects.

Given these requirements we rule out the use of a kernel density estimate because
all of the data must be stored to evaluate the density. Given a sample size n, storage is
O(n), and evaluation of the function at many points is most efficiently accomplished by
first sorting the data which is an O(n log(n)) operation. Evaluation of the estimated
density function at each point is then o(n). As mentioned previously, edge effects are
also a serious problem.

The histogram density estimator is unacceptable because it does not generate a
continuous density function. However, a spline can be fit to the histogram generating
a continuous density function. This estimator is called a histospline [Bone71] and
histosplines are appealing in one dimension because only a histogram of the data is
required to generate the density estimate. Given that the number of bins is chosen so
that the standard consistency results for the histogram density estimate are satisfied,
storage is o(n) and evaluation can be performed in constant time. The extension of
the histospline to multiple dimensions would require fitting a multidimensional spline
to the multidimensional histogram. This could be accomplished but the histospline
can become negative and there may be edge effects. Another method, the penalized
maximum likelihood estimate is also a spline but with knots at all of the sample points
and so storage is O(n). Furthermore the penalized maximum likelihood estimate is not
easily extended to multiple dimensions [Thom90].

We will observe in the next section that there is a better way to estimate a density
using splines. We will introduce a nonparametric density estimator based on partitions
of unity and introduce the B-Spline density estimate which was designed to solve current
graphics problems. The nonparametric B-Spline density estimate is a generalization of
the histogram density estimate, and like the histogram, is related to orthogonal series
estimators (see Schwartz [Schw67]). The B-Spline density estimate requires o(n) storage
and evaluation at each point can be performed in constant time. Since the density
estimate is based on splines, conditional densities can be rapidly generated and the
degree of smoothness is easily controlled.

4 The B-Spline density estimator. Let I denote a finite interval of real num-
bers. A partition of unity for / is a finite set of basis functions {By(z)} defined on [
with the property that each Bjy(z) is continuous and nonnegative and that for every

in [

k

For this application we will also assume that the numbers
b = /Bk(r) > 0 for each k.
1

Given such a partition of unity and data Xi,..., X, with density function p(z),
define the nonparametric density estimate

o) = 3255 Bu(w) (1)
where

=1
Observe that p,(x) is always a continuous density.

B—Spline basis functions are a particularly useful instance of a partition of unity. A
spline of order K with knots u; < uy < ... < u, is any function s(x) defined on [u1, t,)
which is a polynomial of degree K —1 on each interval [u;, u;11) for 1 <7 < m such that
s(z) is K — 2 times differentiable over the interval [uq,u,,). If we restrict s(z) to the
interval [ug, Um—k+1), then there exist functions { By(x) ZHZ_IK and constants {Cj ZL:_IK
so that

m—K

s(x) = kz_: CyBi(x). (3)

and {Bk(aj)}z"“:_lK form a partition of unity on the interval [uf,u,_x41]. The basis
functions { By(x) Z“:_IK depend only on the knots. Any spline of order K on [ug, ty—k+1)
can be written as Eq. 3. For a comprehensive discussion of splines as used in this
research refer to Bartels et al. [Bart87].

Up to K consecutive knots can be coincident and such a point is referred to as
a multiple knot. The degree of smoothness is however, decreased by the presence of
multiple knots. Since we usually want our density estimates to be very smooth, the use
of multiple knots is not recommended except perhaps at the end points of the interval.
In this case the first K — 1 are identified with the left hand end point of the interval,
the last K — 1 knots are identified with the right hand end point of the interval and the
remaining knots are placed between the endpoints.

Given a set of knots and Xy, ..., X,,, the B-Spline density estimator is defined by
Eq. 1 and Eq. 2 where the functions { By} are the B-Spline basis functions determined
by the knot sequence. Of course we require that as the sample size increases, the B—
Spline density estimate should converge to the true density function. Throughout the
rest of this section we assume that for each sample size, n, we have a partition of unity of
(possibly nonuniform) B—Splines over the interval [a, b] with 0 < A = ming |t -1 — ug]
and h = maxy|uppr_1 — url.

7

Theorem 1. Assume that there is a number C, independent of n, so that 1 < h/h < C
and that h — 0 and that nh — oo as n — oo. If p is a bounded function over the
interval I and if p is continuous at the point x in I then asn — oo, E(p,(z)—p(z))?* — 0
in which case we say that p,(x) converges in mean square error (MSE) to p(x).

The function p is said to be Lipschitz continuous on [if there is a number Cy so
that |p(z) — p(y)| < Colz — y| for all « and y in 1.

Theorem 2. Under the conditions of Theorem 1, and assuming that p is Lipschitz
continuous in the interval I then E ([;(pn(z) — p(z))* dz) — 0. In this case we say that
pn converges in Integrated Mean Square Error (IMSE) to p.

The uniform B-Spline case has been extensively investigated in [Gehr90] and in
[Gehr92]. Non uniform B-Splines and partitions of unity in a much more abstract
setting were considered in [Redn93]. Proofs of all of the results given in this section can
be found in these references.

In Figure 3, we see examples of quadratic B-Spline density estimates. These density
estimates are based on the same random data used in the simulations in Section 2. We
see that a B-spline density estimate with too few basis functions (for example m=4
for 50 data points) lack flexibility and that an estimate with too many basis function
fluxuates wildly (for example m=15). However, the B-spline density estimate with m=6
or m=38 basis functions offer very good estimates of the underlying probability density
function. Edge effects are kept to a minimum and the density estimate is smooth.

5 Multiple dimension nonparametric density estimates. The ideas of the
last section are easily extended to multiple dimensions and in particular to surfaces
of various topologies including parametrically defined surfaces. Density estimates over
a rectangle R = [a,b] X [¢,d] in the plane can be constructed using tensor product
splines. In this case let (X1,Y1),...(X,,Y,) be independent identically distributed
random observations with density p(z,y). Given a partition of unity in each of the
and y directions, we can form a partition of unity over the plane by taking products of
basis functions in the x direction with basis functions in the y direction.

We define a two dimensional probability density estimate p,(z,y) in the following

way. Let
o Ok
bul@,y) = 2.2, 7 Bi(2)Bi(y)
ik ik
where
1 n
ajr = — > Bi(Xi) Br(Yi) (4)
=1
b]'k = b]'bk.

A density estimate over a region A in the plane can be obtained by using Eq. 4 with

bk = A/Bj($)Bk(y)d$ dy.
8

As the following theorem demonstrates, consistency results are also available for this
case.

Let {(X;,Y;)}" be identically distributed random variables from some fixed but
unknown density functlon pon A. Choose a sequence of knots in the x and y directions
whose spacing depends on n and let B;(z) and Bi(y) denote the corresponding B-spline
basis functions. Let h(n) = max;; bz and h(n) = minj; b;,.. We assume that the knot
spacing is chosen so that (1) the knot spacing in the z and y directions goes to zero as
n goes to infinity, (2) there is a number C' independent of n so that h(n)/h(n) < C and
(3) that n - h(n) — oo as n — oo.

Theorem 3. If (z,y) is in A and if p is a bounded continuous function over A, then
E(pu(z,y) — p(z,y))* — 0 as n — oo in which case we say that p,(x,y) converges in
mean square error (MSE) to p(z,y).

The extension to higher dimensions is straightforward and consistency results can
be found in the works of Gehringer and Redner in [Gehr92] and [Redn93].

As our final statistical result we show that density estimates over parametrically
defined surfaces can be created in a way to preserve mean square error convergence of
the estimated density to the true density.

Let A be a region in the plane and let r : A — R® be a smooth 1-1 function. Then
M =r(A) = {X = r(u,v)|(u,v) € A} is a parameterized surface. Since r is 1-1, we
define the function (u(X),v(X)) : M — A as the inverse function of r and define a
density estimate over M in terms of a density estimate on A. Given a sample of random
points {X;}" , from a density function f on M, we define a density function on A by

p Zza]]fk()

where
ajp = 1/”23 i))Br(v(X5)).

We then define a density function on M as

B (X) = pa(u(X), v(X))/||0r/du x Or/dv]] ()
Theorem 4. For each sample size n let {Bi(x)B;(y)} be a partition of unity on the
set A in the plane and suppose that there are numbers a and b so that

lov/oul| < b ||0r/0u]| < b
and
0<a<|l0r/0ux dr/dv]| <b

Under the conditions of Theorem 3 the density estimate converges in mean square error
at each point of r(A). If p(x) is Lipschitz continuous on M then the density estimate
converges in integrated mean square error to the true density function.

The most useful way of thinking about this construction is that we have built
a nonparametric density estimate over the region A in the plane and that this can

9

be transformed using Eq. 5 into a density estimate over the surface M. From an
operational point of view this is very satisfying since most of the computation takes
place in the plane where the arithmetic and computation is simple. To generate a
random point X on the surface from the density function p» we generate a random
point (u,v) in A using the density function p, and define X = r(u,v). To evaluate the
density pM(X) we evaluate the inverse maps u(X) and v(X) and then evaluate p,(u,v)
using the surface Jacobian. This last step can be performed using a numerical estimate
of the derivative.

6 Representation of the lighting function. Let M be a surface in R® and
be an interval of real numbers corresponding to the wavelengths of visible light. Let H
be the hemisphere of directions above any point on the surface. We define a lighting
function as a function

[:MxIx H— RT

on the non-negative real numbers.

The function [represents the lighting function specified by the particular graphics
application. The function can represent intensity, as in earlier rendering systems based
on local illumination models [Blin77,Cook82]. For our application we think of a lighting
function as representing the energy per unit time per unit area per unit interval of
wavelength per unit solid angle and thus [may be referred to as a spectral radiance
function or as a power density function. The total power is defined by

P:/ // cos(8) dw d\dA
MJIJH

and thus [cos()/P is a density function in the sense of probability theory.

Before we continue further, we observe that lighting functions may be defined over
other domains. In particular M may be a volume, a curve or a point. The color domain
may be an interval larger than the interval of visible light or may be one of the usual
3 dimensional color spaces. As M changes, the set of admissible directions H may also
be suitably modified. All of our comments in this paper are fairly easily extended to
the multiplicity of lighting domains.

A special case of the lighting functions described above are those lighting functions
which are independent of direction. Lighting functions representing diffusely reflected
light are functions of only space and wavelength. In this case,

[:Mx1I— R

is a radiosity function representing the energy per unit time per unit area per unit
interval of wavelength. The total power is defined by

P:/ /Zd)\dA
MJI

and therefore [/ P is a density function in the sense of probability theory. The represen-
tation of radiosity functions in a ray tracing program based only on rghb values is even

10

simpler. In this case one needs only a lighting function which varies over the surface
for each of the r, g, and b bands.

B—Spline density estimators were created for the purpose of representing lighting
functions over surfaces. We begin by describing a monochromatic B-Spline lighting
function over a rectangle R in the x — y plane. We suppose that the knot sequence
has been chosen in each of the x and y directions and that the order of the spline
has been selected. As previously mentioned, this completely specifies the B—Spline
basis functions in the z and y directions. We use equally spaced knots in our graphics
application. Given this arrangement, the lighting function can be defined as

la,y) =D Zk: a;x Bj()Br(y)/bjk-

J

where
bk = /R/Bj(fﬁ)Bk(‘y)de dy.

Since the B-Spline basis functions are non-negative, {(z,y) is a power density (i.e.
radiosity) function if all the aj;’s are non-negative. In this case the power of the light
source is P =7, >y .

We now construct the power density function estimate [, on the rectangle R, given
a random sample of rays generated by the light sources in the scene. Each such random
ray is composed of a triple of numbers (X;,Y;, P;) which are the & and y locations of
the intersection of the ray with the rectangle and the power of the ray. Of course the
ray also has a direction, but this information is not used to reconstruct the estimate of
a diffuse light source. Given n such rays the nonparametric estimate of the radiosity
function is

(o) = Y ay 2B) Q

ik bjx

where

ézjk = 1/n Z PZB](XZ)BJC(K)
i=1

If we are building a lighting function for a traditional ray tracing program based on
r, g, and b values, then we use the power of each of the r, g, and b bands to construct
three lighting functions.

If we are working with a system based on wavelength, then each sample from the
lighting function is composed of four numbers, (X;,Y;, P, A;) and the direction of the
ray. The density estimate based on this data uses

ééjkl = 1/n Z PZB](XZ)B]C(K)B[()\Z)

11

The total power of the light source is

P=>"3> dju.
ikl

These ideas can be extended to create a lighting function over a surface M by
expressing M as a parametrically defined surface and by using the ideas presented in
section 5. For a surface M which can not be easily defined parametrically, a partition of
unity may be constructed directly on the surface M. The theory developed in Redner
and Gehringer [Redn93] uses abstract metric spaces and is sufficiently general to adapt
to almost any situation which might arise in a graphics application.

To conclude this section we observe that a B-Spline lighting function is an efficient
structure for the representation of a lighting function over a surface. We see that such
a function is easily constructed from random samples and that the required storage is
determined by the number of basis functions and not the sample size. Evaluation of
B—Splines is rapid and the manipulation and evaluation of B-Splines is well understood
within the graphics community. By using quadratic or higher order splines, lighting
functions are continuously differentiable and hence mach bands do not occur. The
generation of random values with distribution given by a B-Spline lighting function is
straightforward and is described in Appendix 1. Finally, important quantities like the
power of the source and even conditional densities are also rapidly evaluated due to the
structure and polynomial nature of the B-Spline lighting functions.

7 Some bidirectional ray tracing details. Bidirectional ray tracing is com-
posed of two phases. The first phase is the light propagation step. In this step, rays
are shot from the light sources. There are numerous strategies for performing this step
and we will describe a method based on the delivery of random rays. This method may
be preferred because it does not create classical aliasing artifacts but instead generates
high frequency noise of (hopefully) low amplitude.

Given a number n and a wavelength dependent lighting function we describe a
procedure for generating n random rays which properly sample the power distribution
of the light source. We begin by computing the total power of the diffuse source, which
is easily done if the source has the form given in equations 4 or 6. Remember that the
radiosity function in(r, y,A)/ P is a density function in the sense of probability theory.
For each number ¢ from 1 to n, a random direction is determined and a random point
from the density in/P is generated and is given power 2P cos(#)/n (the unexpected
factor of 2 is required since the average value of cos @ over the hemisphere is only 1/2.)
As well as the origin and the direction of the ray, a wavelength and a power value for
the ray are kept as the ray propagates through the system.

When the ray strikes a diffusely reflecting surface or a surface which reflects at
least part of its power diffusely, the fraction of the power which is reflected diffusely
is deposited on the surface. These power values could be stored as histograms, but of
course we use the B—Spline nonparametric density estimates to record the deposition
of this power on the surface.

12

In order that most of the rays intersect the object or objects which have been
targeted, a spherical bounding volume is created about the important objects. A cone
is specified by a point source at one end and the bounding volume at the other. At this
time we have implemented point sources as the primary sources of light and have used
spherical bounding volumes. We only generate light rays which lie in this light cone.
To further increase the sampling efficiency, stratification of the direction of light rays
is used. The details of this computation are presented in Appendix 2. Stratification
in wavelength sampling is also used to insure color balance and to improve efficiency.
The adaptation of the cone to line and area light sources is straightforward but is
slightly more expensive since the linear transformation given in the appendix must be
recomputed every time a ray is generated.

The power associated with each ray depends on the number of rays, n, the aperture
of the cone which is determined by an angle, ¢g, and the total power, P, of the source.
The power associated with the ray is therefore given by

Pray = P 27(1 — cos(¢o))

n 47

where the second factor is the fraction of the area of the sphere of radius one which lies
inside the cone.

In order for this to be consistent with the traditional ray tracing portion of the
program, the lighting computation in the ray tracer must account for the distance from
the point on the surface to the light source. In particular, if distance is denoted by r,
the factor of

1

47r?

must be included in the traditional ray tracing computation when a shadow ray is shot
towards a light. The correctness of this approach is well known [Kaji90] but this factor
is frequently ignored.

In the light propagation portion of the algorithm, two special classes of objects are
recognized, objects at which light rays are targeted and objects upon which lighting
functions will be built. For each target object and for each light source, rays are
generated towards the target object.

Those rays which strike the objects are allowed to propagate through the scene. If
they hit one of the objects upon which a lighting function is to be built, then the lighting
function for that object is updated. Upon completion of the light propagation algorithm,
the lighting functions are written to a small file. A traditional ray tracing program
is applied to the original scene with the lighting functions added as internal lighting
sources. Care must be taken so that no redundancy occurs in the accumulation of
lighting information. In all of the pictures displayed in this paper, we accumulate direct
lighting in the classical ray tracing portion of the program and so this information must
be ignored in the light propagation phase. But it is also easy to alter this to accumulate
direct lighting in the light propagation portion of the algorithm. In either case, since
the forward process is independent of the view, the traditional ray tracing step can

13

be performed from different points of view without rerunning the light propagation
algorithm. Depending on the specifics of the implementation, dispersion, the focusing
of lenses, color bleeding and indirect lighting can be demonstrated. These are effects
which are not usually found in ray traced images, however, images of rainbows have
been created by Musgrave [Musg89].

Image 1, is an assembly of the results from nine tests. Each test used the same
scene, light source and viewpoint description. The only object visible is a rectangle
made of a diffusely reflecting material viewed obliquely and lit from directly above by
a single, D65 standard point source. Between the light and the rectangle, but out of
view, is a transparent sphere. In each test a B—Spline illumination map was computed
on the rectangle. The rows of images 1, 2 and 3 were created using splines of order
I, 2 and 3 (constant, linear and quadratic splines). The three columns correspond
to images made with a 10 by 10, a 20 by 20 and a 30 by 30 grid of basis functions.
Clearly piecewise constant splines are not adequate without interpolation and the linear
structures and mach banding effects are quite clearly visible in the piecewise linear
splines. The quadratic splines with a 10 by 10 grid show a surprising lack of color.
This is caused by the low resolution of the red green and blue lighting functions and
so the individual colors have been reconstituted into white. The final image in the
lower right hand corner is a quadratic spline with a 30 by 30 grid. The image quality
is good although there is some low level noise. The number of forward rays for each
of the individual images was 10,000 and only one ray per pixel was used. Improved
stratification of the light cone would allow us to greatly decrease the number of rays
needed.

In Image 2 we have used the same geometry as in Image 1. The number of forward
rays has been increased to 50,000 and the image was made using cubic splines with a
40 by 40 grid. This image is also antialiased using up to 50 rays per with a variance
stopping criterion. In almost all cases, quadratic splines are adequate, but there can be
slight improvement in image quality when higher order splines are used.

8 Image description. A bidirectional ray tracing program has been implemented
at the University of Tulsa. Light propagation rays from light sources are wavelength
dependent so that dispersion can be captured. In Image 3 we see five spheres float-
ing over a horizontal plane. The index of refraction for the spheres is a non—constant
function of wavelength. Therefore the focussed light which appears beneath each of the
spheres contains color variations.

This image was created by using a 30 by 30 grid of quadratic B-Splines to represent
the lighting function over the rectangle. In an ultra-conservative effort to insure image
quality, 50,000 rays from each of 18 overlapping wavelength intervals was used. The
final image was rendered with 512 by 512 pixels with a minimum of eight rays per
pixel and a maximum of 20 rays per pixel. The exact number of rays for each pixel
is determined dynamically based on the variance of the color values already computed
[Lee85]. The maximum tree depth of the ray tracing stacks was set to five. Even with
this exorbitant number of light rays generated in the light propagation portion of the
algorithm, this portion of the algorithm was only about 5 percent of the total run time.

14

In Image 4 we show the effects of a prism on natural sunlight. Physical data
from Wyszecki and Stiles [Wysz82] is used to describe a bright point light source at a
considerable distance from the objects in the scene. A beautiful and natural looking
spectrum appears on the wall in the background. In this example the light propagation
algorithm ran in about one half the time of the traditional ray tracing program. There
are many ways that this run time can be further reduced and these ideas are currently
being explored. In Image 5 we see a blowup (magnification 8) of the spectrum on the
wall. We observe that the spectrum is smooth with very few artifacts even though each
pixel in this image has been replicated 64 times.

Image 6 is a more elaborate picture demonstrating that bidirectional ray tracing
can be effectively used to create reasonably complex images involving dispersion and
the focussing of light.

9 Conclusions and future work. We have presented work on the extension
of bidirectional ray tracing to create images with prismatic effects. B—Spline density
estimators have been introduced in this paper for use in the construction of realistic
computer generated images. B—Spline density estimators have been shown to have the
appropriate large sample properties and can be easily generated, evaluated and used in
a monte-carlo sampling scheme. B—Spline density estimators have been incorporated
into a bidirectional ray tracing program which can produce dispersion, the focussing of
light by lenses and color bleeding.

Further areas of research include refinements to the ray propagation portion of the
algorithm. Specifically, work needs to be done in making the ray propagation more
efficient by the extension of the cone idea of section 7 to area light sources and by the
improvement of stratification schemes.

B-Spline lighting functions currently represent only diffuse lighting functions over
surface. The extension to directionally dependent distributed lighting functions needs
to be investigated and the incorporation of directionally dependent distributed lights
into bi—directional ray tracing needs to be pursued.

Acknowledgements The authors would like to thank Sun Microsystems, Inc. for
their genererous equipment donations and the National Science Foundation for support
under grant number CCR-8915693. The authors would also like to thank the referees
for their many helpful comments.

References

[1] Arvo, James, “Backwards Ray Tracing”, Developments in Ray Tracing, ACM SIG-
GRAPH 1986 Course Notes no. 12.

[2] Bartels, Richard, John Beatty, and Brian Barsky, An Introduction to Splines for
use in Computer Graphics & Geometric Modeling, Morgan Kaufmann Publishers,
1987.

[3] Blinn, J.F. “Models of Light Reflection for Computer Synthesized Pictures”, Com-
puter Graphics 11,2 (July 1977), pp. 192-198.

15

[4] Boneva, Liliana 1., David Kendall and Ivan Stefanov, “Spline Transformations:
Three New Diagnostic Aids For The Statistical Data-Analysist”, J. of the Roy.
Stat. Soc., B, Vol. 33, No. 1 (1971).

[5] Campbell, A.T.III, and D.S. Fussell, “Adaptive Mesh Generation for Global Diffuse
Mlumination”, Computer Graphics 24,4 (Aug. 1990), pp. 155-164.

[6] Chen, S. E., Rushmeier, H.E., G. Miller, and Douglass Turner, “A Progressive
Multi-Pass Method for Global Illumination”, Computer Graphics 25,4 (Aug. 1991),
pp- 157-164.

[7] Cohen, M.F., and D.P. Greenberg, “The Hemi-cube: A Radiosity Solution for
Complex Environments”, Computer Graphics 19,3 (July 1985), pp. 31-40.

[8] Cook, R.L., and K.E. Torrance, “A Reflectance Model for Computer Graphics”,
ACM Transactions on Graphics 1,1 (Jan. 1982), pp. 7-24.

[9] Cook, R.L., T. Porter, and L. Carpenter, “Distributed Ray Tracing”, Computer
Graphics 18,3 (July 1984), pp. 137-145.

[10] Gehringer, Kevin, Nonparametric probability density estimation using normalized
B—-Splines, MS Thesis, The University of Tulsa, 1990.

[11] Gehringer, K.R. and R.A. Redner, “Nonparametric Density Estimation Using Ten-
sor Product Splines”, Comm. in Stat.—Simula. 21(3), (1992) pp. 849-878.

[12] Gerald, Curtis and Patrick Wheatley, Applied Numerical Analysis, Fourth Edition,
Addison-Wesley 19809.

[13] Goral, C.M., K.E. Torrance, D.P. Greenberg and B. Battaile, “Modeling the In-
teraction of Light Between Diffuse Surfaces”, Computer Graphics 18,3 (July 1984),
pp. 213-222.

[14] Heckbert, Paul S., “Adaptive Radiosity Textures for Bidirectional Ray Tracing”,
Computer Graphics 24,4 (Aug. 1990), pp. 145-154.

[15] Hogg, Robert B. and Allen T. Craig Introduction to mathematical statistics 2d ed.
New York, Macmillan, 1965.

[16] Immel, D.S.;, M.F. Cohen and D.P. Greenberg, “A Radiosity Method for Non-diffuse
Environments”, Computer Graphics 20,4 (Aug. 1986), pp. 133-142.

[17] Kajiya, James T., “The Rendering Equation”, Computer Graphics 20,4 (Aug.
1986), pp. 143-150.

[18] Kajiya, James T., “Radiometry and Photometry for Computer Graphics”, ACM
SIGGRAPH Course Notes no. 24, (1990) pp. 3.1-3.30. .

[19] Lee, M.E., R.A. Redner and S.P. Uselton, “Statistically Optimized Sampling for
Distributed Ray Tracing”, Computer Graphics 19,3 (July 1985), pp. 61-67.

[20] Musgrave, F.K., “Prisms and Rainbows: a Dispersion Model for Computer Graph-
ics”, Graphics Interface’89 (1989), pp. 227-234.

[21] Parzen, E., On Estimation of a Probability Density Function and Mode, Annals of
Mathematical Statistics, Vol. 33, (1962) pp. 1065-1076.

[22] Redner R.A., and K.R. Gehringer, “Non-parametric Density Estimation Using Par-
titions of Unity”, to be submitted.

(23] Sillion, F. and C. Puech, “A General Two-pass Method Integrating Specular and
Diffuse Reflection”, Computer Graphics 23,3 (July 1989), pp. 335-344.

16

[24] Silverman, B. W., Density Estimation for Statistics and Data Analysis, Chapman
and Hall, New York (1986).

[25] Scott, David W., Multivariate Density Estimation: Theory, Practice, and Visual-
ization, Wiley—Interscience, New York (1992).

[26] Thompson, J.R. and R. Tapia, Nonparametric Function Fstimation, Modelling and
Stmulation. STAM, Philadelphia, 1990.

[27] Wallace, J.R., M.F. Cohen and D.P. Greenberg, “A Two-pass Solution to the Ren-
dering Equation: a Synthesis of Ray-tracing and Radiosity Methods”, Computer
Graphics 21,4 (July 1987), pp. 311-320.

(28] Wyszecki, G., and W. Stiles, Color Science: Concepts and Methods, Quantitative
Data and Formulae, second edition, Wiley, New York, 1982.

17

Appendix 1.

The generation of random values from a B—Spline density. In this Ap-
pendix we describe how random values can be generated from a B-Spline lighting
function based on a uniform knot spacing. We begin with the observation that, if
X1, Xs,..., Xk are independent uniformly distributed random values on the interval
[0, 1], then the random value Y = }_; X; has as its density function the K — th order
B-Spline with knots at the integers 0,1,..., K. This implies that, given a uniform
knot spacing, a random value from the density function By(x)/b; with support on the
interval [ug, ugyx] is generated by computing

W = (uk_}_](— uk) Y/I(— Uk.

Given a one dimensional density function of the form

ZakBk X
k

with

Zakz 1,

k

a random value from this density is generated by first choosing a random class £ with
probability ar. The final random value is generated by producing a random value
from the density function Bj(x)/by according to the procedure described in the first
paragraph.

The extension to the generation of random rays from a lighting function of the form

ZZO‘J Bk()

]k

where

o = 1/n Zn: PZ'B]' (XZ)B]C(YZ)

=1

and
P=3 2 aj
7k

is straightforward. We normalize the lighting function by dividing by P, so that the
new function is a probability density function. We choose a random pair of integers j
and k with probability «;z/P. Random values X and Y are then generated from the
densities B;(x) and Bj(y) respectively. The desired ray is the ray with origin (X,Y")
with a direction randomly chosen over the hemisphere of directions and with power
7 cos(theta)P.

18

Appendix 2.

The generation of rays within a cone Consider the mapping
D :]0,2x] x [-1,1] — the unit sphere.
defined by
D(0,t) = (sin(0)V1 — 12, cos(0)V/1 — t2,1).

This function is an onto mapping which is one to one on the interior of the rectangle.
Since ||D; x Dg|| = 1 this mapping is area preserving. This implies that if (6,t) is
uniform in [0,2x] x [—1,1] then D(6,1) is a uniform random variable on the sphere.

A word of warning is in order. It is common to write the vector

(sin(@)V'1 — t2,cos(0)V1 — t2,1)

(sin(@) sin(¢), cos(9) sin(¢), cos(¢)).

Points on the unit sphere can then be generated by generating 6 and ¢ = cos(¢) uni-
formly on [0, 27] and [—1, 1] respectively, with sin(¢) defined as /T — cos? . If, instead,
you generate ¢ uniformly on [0, 27], you do not get a uniform distribution on the sphere.
Instead you get a distribution which is too bright at both poles.

Now we consider the problem of generating random vectors whose angle with the
positive z axis is less than or equal to some angle ¢q. If we let zo = cos(¢g) then the
region Ry, = [0,27] X [z0, 1] is mapped onto the intersection of the sphere with the cone
pointing in the direction of the positive z-axis with angle ¢q.

We can therefore generate direction vectors within this cone by generating vectors
in the rectangle Ry, and applying the mapping D.

We make the interesting observation that since the area of the rectangle [0,27] x
[20, 1] is 27(1 — 2zg) then the area of a ‘cap’ of the sphere, i.e. the set of all points on the
sphere with z coordinate greater than or equal to some value zg, must also be 27 (1 —zg).
This is simply 27 times the thickness of the cap.

If the center of the cone of interest does not point in the direction of the positive
z-axis, then the data generated by the above process must be rotated. If the direction
of the cone is defined by a unit vector U = (uq,uz, us) then we will want a rotation
which maps the vector (0,0,1) to U. This can be done in two stages, a rotation about

the y-axis followed by a rotation about the z-axis. If we let v = /1 — u2 then the
matrices associated with these two rotations are

Uus 0 U3
0 1 0

—Us3 0 Us

19

and

1 U1 — U9 0

‘— U9 U1 0
A0 0 v

whose product (taken in the proper order of course) is

1 Utz —Uz UIV3
— | u2us Uy Uav3
U3 2

—v3 0 U3V3

This rotation can also be described through the use of a Householder transformation
[Gera89).

If a single bounding sphere for the entire scene is constructed, then only one cone
for each light source is required. If, for each light source, a collection of cones is used,
then there may be overlap between the cones. When generating rays from the second
cone, for example, one must test that the generated ray does not lie within the first
cone. This condition can be tested by the evaluation of the dot product of the generated
ray with the ray which forms the central axis of the first cone. If there is overlap then
the contribution of this ray is set to zero.

Stratification of samples can be used to reduce the variance of estimates of lighting
function parameters. In the generation of rays from the light source, stratification can
be implemented in both the direction of the rays and their associated wavelengths.
Stratification in the direction of the light rays can be accomplished by stratifying the
rectangle [0, 1] X [—7, x| and using the scheme described in this Appendix. A version of
this has been implemented. Stratification in wavelength is also strongly recommended
and is also implemented in our ray tracing system.

20

Image 1.

Image 2.

21

Image 3. Spheres with Dispersion

Image 4. Prism and a spectrum

22

Image 5. Magnified spectrum

Image 6. Spectra generated by a prism and a torus

23

